Comparing knowledge, attitude, practice and stigma associated with SARS- CoV-2 Infection among Healthcare students of Bangalore city: A cross sectional study

Brunda Nallurahalli Krishniah1, Sujatha Nispat Kulkarni2, Bhaskar Kurre3

1Assistant Professor, Department of Community Medicine, East Point College of Medical Sciences & Research Centre, Bangalore, Karnataka; 2Assistant Professor, Department of Community Medicine, Navodaya Medical College & Hospital, Raichur, Karnataka; 3Assistant Professor (Statistics), Department of Community Medicine, Navodaya Medical College & Hospital, Raichur, Karnataka.

Abstract

Background: In 2020, a new global pandemic has emerged, caused by a new strain of Corona virus called SARS-CoV-2. A poor understanding of the disease among healthcare students may implicate in delayed treatment and rapid spread of infection and development of complications. Objectives: 1) To estimate the knowledge, attitude, practice and stigma associated with SARS- CoV-2 infection among healthcare students. 2) To estimate the association between socio-demographic determinants with knowledge, attitude, practice and stigma of SARS- CoV-2 infection among healthcare students. Methods: A web-based cross-sectional study was undertaken among 493 healthcare i.e., medical, nursing and allied sciences students, during 1st May to 20th May 2020, using a pre-designed and semi-structured questionnaire. Data was analyzed using Chi square test, t-test, one-way Anova and Bonferroni test was used for assessing the association among the study variables. Results: The study revealed that, there were about 225(45.64%) medical, 165(33.46%) nursing and 103(20.89%) allied sciences students. Majority were females 349(70.79%), majority were Hindus 333(67.54%). Mean knowledge score of medical, nursing and allied sciences students were 15.66 (2.518), 14.16 (2.92) and 14.46 (3.11) respectively. Practice score was good among nursing than allied sciences students at ‘p’ (0.003). Conclusion: Even though the overall knowledge was less in our study participants, majority of them had followed good practices for preventing SARS- CoV-2 infection.

Keywords

SARS- CoV-2; Knowledge; Stigma; Infection; Healthcare Students

Introduction

Corona virus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most people infected with the virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical conditions like cardiovascular disease, diabetes, chronic respiratory disease, or cancer are more likely to develop serious illness. (1) In 2020, a new global pandemic has emerged; caused by a new strain of CoV called SARS-CoV-2. (2) Multiple epidemic outbreaks occurred during 2002 (SARS) with ~800 deaths and 2012 MERS-CoV with 860 deaths.(3,4) Approximately eight years after the MERS-CoV epidemic, the current outbreak of novel corona virus in Wuhan City of China, has emerged as a global outbreak and significant public health issue.(5) There is rapid surge of cases since the pandemic has started with 39,279,462 cases and 586,431 deaths globally as on 27/6/2021 (7) The virus spreads from one person to another by droplets or by direct contact, and it could take up to 14 days since the infection by the virus to develop symptoms.(6-10) Patients and suspected persons should be isolated to protect them and others around them. Because it is a virus, antibiotics are not effective against it,
and the first line of treatment is supportive treatment. (6, 10)
A poor understanding of the disease among healthcare
students may implicate in delayed treatment and the
rapid spread of infection and development of life-
threatening complications. Hence the study aimed to
investigate the knowledge, attitude, practice and stigma
of healthcare students about COVID-19.

Aims & Objectives
1. To estimate the knowledge, attitude, practice and
 stigma associated with SARS-CoV-2 infection among
 healthcare students.
2. To estimate the association between socio-
 demographic determinants with knowledge, attitude,
 practice and stigma of SARS-CoV-2 infection among
 healthcare students.

Material & Methods
Study Type - A web-based cross-sectional study
Study Population - First- and second-year healthcare i.e.,
 medical, nursing, and allied sciences students enrolled
 under Rajiv Gandhi University.
Study Area - Bangalore
Study Duration - 1st May to 20th May 2020
Sample Size Calculation - A pre-designed semi-structured
 questionnaire (6) was distributed to 600 health care
 students of first and second year using Google forms
 through social media networks like WhatsApp and e-mail
 address (only one response was accepted from each email
 address) of the students. Out of the 493 students 225
 were medical, 165 nursing and 103 allied sciences
 students.
Inclusion Criteria - Students who were willing to
 participate and completely responded to our questionnaire.
Exclusion Criteria - Students who were not willing to
 participate in the study.
Strategy for collection, Working Definition - The
 questionnaire consisted of five main sections: socio-
 demographics, knowledge questions included topics on
 history, age groups affected and age group more likely to
develop complications, vulnerable groups, transmission of
infection, common signs and symptoms, questions on
prevention of spread of infection and treatment. Attitude
questions included availing vaccine against COVID-19
infection, contribution of lockdown in preventing the
spread of infection, sufficiency of information to fight
against current pandemic etc. Practice questions included
participant’s recent practices like attending social events,
avoiding crowded places and shaking hands, following
social distancing, frequent washing of hands using soap
and water, stored helpline number to contact in case of
emergency and about self medication. Stigma questions
included maintaining confidentiality about COVID-19
infection in their family member etc. Each correct answer
was given a score of ‘1’ and for wrong answer a score of
‘0’.

Ethical Approval - Institutional Ethics Committee.
Data Analysis - Data was further processed and analyzed
using Open Epi Info statistical software (V 7.0). Data was
expressed as frequencies and percentages for qualitative
data. Mean and standard deviations for quantitative data.
Chi square test, independent sample t-test, one way
Anova and Bonferroni test (Multiple comparison test) was
used for assessing the association among the study
variables. A “p” value of <0.05 and <0.001 are considered
as significant and highly significant respectively. We
included only those students who

Results
The study revealed that, out of 493 students, there were
about 225(45.64%) medical, 165(33.46%) nursing and 103
(20.89%) allied sciences students. There were about
349(70.79%) females and 144(29.21%) male students.
Majority were Hindus 333(67.54%) followed by Christians
112(22.71%), Muslims 44(8.92%) and students belongs to
other religion 4 (0.81%).
(Table 1) Mean knowledge, attitude, practice and stigma
score was calculated by using one way Anova test and the
mean knowledge (standard deviation) score of medical,
nursing and allied sciences students were 15.66 (2.518),
14.16 (2.92) and 14.46 (3.11) respectively and this
difference is statistically significant at ‘p’ value 0.0001.
Mean practice (standard deviation) score is 5.09 (1.01),
5.32 (0.96) and 4.88(1.24) and stigma (standard deviation)
score 2.00(0.91), 1.78(0.94) and 2.01(0.93) and this
difference is statistically significant at ‘p’ value 0.004 and
0.045.
(Table 2) Using Bonferroni test the knowledge, attitude,
practice and stigma score were compared with medical,
nursing and allied sciences students. Knowledge score was
high among medical students when compared to nursing
and allied sciences students and this difference is
statistically highly significant at ‘p’ value 0.0001 and 0.001.
Practice score was high among nursing than allied sciences
students at ‘p’ value 0.003.
(Table 3) Independent sample “t” test was used to test the
association. Knowledge score was good among males than
females at ‘p’ value 0.001. Practice score was good among
females than males at ‘p’ value 0.0001.
One way Anova test was used to test the association of
knowledge, attitude, practice and stigma score with
religion of healthcare students. Knowledge score was
higher among Muslim students followed by Hindus, others
and Christian students. Attitude score was high among
other students followed by Hindu, Muslims and Christian
students and this difference is statistically significant at ‘p’
value 0.024. Practice score was high among Christian
students followed by Hindu, Muslims and others. Stigma
score was more among Muslim students followed by
Hindus, Christian and students belonging to other religion.
Bonferroni test was used to test the association of knowledge, attitude, practice and stigma score with religion of healthcare students. Good attitude was practiced among Hindus when compared to Muslims and Christians at ‘p’ value 0.031.

Discussion

The current study assessed the knowledge, attitudes, practice and stigma of healthcare students in Bangalore city regarding SARS-CoV-2 infection. In this study, majority of the study participants were female students (70.79%), similar findings were reported from studies conducted by Khasawneh Al et.al,(2) in Jordan in the year 2020 (59.5%) and Zhong BL et.al,(11) in China in the year 2020 (65.7%) , where as in the studies conducted by Maheshwari S et.al,(12) Uttarakhand in 2020 (50.3 %), Bhagavathula AS et.al,(13) conducted among health care workers globally in 2020 (51.6%) and Krishna PR et.al,(14)among the public of India in 2020 (57.58%) majority of the study participants were males. In our study, majority of the study participants were Hindus (67.54%) followed by Christians (22.71%), Muslims (8.92%) and students belongs to other religion (0.81%). Almost similar findings were reported in a study conducted by Maheshwari S et.al, (12) majority were Hindus (87.3%) followed by Muslims (9.3%) and students belongs to other religion (3.4%).

Present study revealed that mean knowledge (standard deviation) score of medical, nursing and allied sciences students were 15.66 (2.518), 14.16 (2.92) and 14.46 (3.11) respectively and this difference is statistically significant at ‘p’ value 0.001, mean knowledge score was highest among medical students this is because of their exposure to information about SARS –CoV- 2 virus infection by attending virtual webinars, sensitization program, information education and communication activities and reading articles about the latest updates when compared to nursing and allied sciences students. Similar findings were reported from the study conducted by Wahed WY et.al.(15) Correct answers were mostly identified for all items by more than half of participants with a significantly higher percent in medical students than in allied science students and this difference was statistically significant at p = 0.001. Mean practice (standard deviation) score is 5.09 (1.01), 5.32 (0.96) & 4.88 (1.24) this difference is statistically significant at p = 0.004, practice score is high among nursing students in our study when compared to medical and allied health sciences students, this is because nursing students were posted to hospital and health education regarding hygienic practices was given to them, whereas medical and allied health students had only online classes. Stigma (standard deviation) score 2.00 (0.91), 1.78 (0.94) & 2.01 (0.93) and this difference is statistically significant at p= 0.045, stigma was more among allied sciences students this may be because poor updating of knowledge regarding the current pandemic by these students and also because of the cultural practices practiced by their family members.

Present study revealed that knowledge score is high among males than females at ‘p’ value 0.001. Similarly, results were noted by Wahed WY et.al, (15) with no statistically significant difference, while study conducted by Bai Y et.al, (3) reported that females had significantly more knowledge score than males at p = 0.001. In our study attitude towards controlling SARS- CoV-2 infection was almost similar among males and females and this difference is statistically not significant, this is because of regular updating of knowledge regarding current pandemic by the students. Where as in study conducted by Zhong BL et.al, (11) attitude towards controlling SARS-CoV-2 significantly differed across genders. While in a study conducted by Maheshwari S et.al, (12) attitude towards controlling SARS- CoV-2 infection was high among females than males and this difference is statistically not significant. In our study, female students had more practice score regarding prevention and spread of SARS CoV – 2 infection than males and this difference is statistically highly significant at ‘p’ value 0.0001, the study conducted by Maheshwari S et.al, (12) also showed similar results. Therefore, it is recommended that males should pay more attention to practice towards prevention of SARS- CoV-2 infection. In present study, stigma regarding SARS CoV-2 infection was less among females than males, this difference was not significant.

In present study, knowledge regarding SARS CoV-2 infection is high among Muslim students followed by Hindus, others and Christian students and this difference is not significant. Attitude regarding prevention of SARS CoV-2 infection was high among students belonging to other religion followed by Hindus, Muslims and Christian students and this difference is significant, this is because of updating knowledge about the current pandemic. Practices regarding prevention of SARS CoV-2 infection was high among Christian students followed by Hindus, Muslims and others and this difference are not significant. Stigma regarding SARS CoV-2 infection was more among Muslim students followed by Hindus, Christian and students and others, this difference is not significant, this may be because of religious practices followed in the family. Study conducted by Maheshwari S et.al, (12) reported almost similar findings except that the attitude score difference among various religions was significant.

Conclusion

Our study concluded that medical students had more knowledge than nursing and allied sciences students. Majority of the study participants had followed good practices for preventing SARS- CoV-2 infection.

Recommendation

Our study recommends that focus group discussion and symposiums from authentic sources can improve the knowledge among the healthcare students which in turn
will change their attitude towards COVID-19 infections and will help to adapt better practices for preventing the infection.

Limitation of the study

Due to pandemic, we could not interview the students directly. Hence a web-based study was carried out.

Relevance of the study

It helps us to understand the importance of updating the recent knowledge on COVID-19 infection to health care students, in order to deliver proper patient care.

Authors Contribution

BNK– Concept and design of the study, data collection, searching the literature related to the study, data analysis, manuscript preparation, editing and should be considered as ‘Guarantor’. SN– Concept and design of the study, data collection, searching the literature related to the study, data analysis, manuscript preparation and editing. BK– Statistical analysis.

References

1. World health organization, Available online: https://www.who.int/health-topics/coronavirus#tab=1
7. Gavi ‘The Vaccine Alliance’. Novel corona virus (COVID-19) situation. Available online: https://www.gavi.org/covid19?pcid=3jwWKCAjwv-CGBhnLEwA0QzWx0oVnxvh714CdFiarCgo-csv5R0ykFqrcQXALG4X7nqPW_uijQII(DwxcQgaUQAvD_BwE
(Sited on 25/12/2021)

Tables

| TABLE 1 MEAN KNOWLEDGE, ATTITUDE, PRACTICE AND STIGMA SCORE OF STUDY PARTICIPANTS |
|-----------------|-----------|----------|----------|-----------------|-----------|----------|----------|----------|
| **Score** | **N** | **Mean** | **Std. Deviation** | **Std. Error** | **95% Confidence Interval for Mean** | **Minimum** | **Maximum** | **P Value** |
| Knowledge Score | Medical | 225 | 15.667 | 2.518 | 0.168 | 15.336 | 15.997 | 9 | 22 | 0.000 |
| | Nursing | 165 | 14.164 | 2.929 | 0.228 | 13.713 | 14.614 | 7 | 20 | |
| | Allied Sciences | 103 | 14.466 | 3.118 | 0.307 | 13.857 | 15.075 | 0 | 20 | |
| | Total | 493 | 14.913 | 2.872 | 0.129 | 14.659 | 15.167 | 0 | 22 | |
| Attitude Score | Medical | 225 | 3.400 | 1.232 | 0.082 | 3.238 | 3.562 | 0 | 6 | 0.060 |
| | Nursing | 165 | 3.121 | 1.046 | 0.081 | 2.960 | 3.282 | 1 | 5 | |
| | Allied Sciences | 103 | 3.330 | 1.158 | 0.114 | 3.104 | 3.556 | 0 | 6 | |
| | Total | 493 | 3.292 | 1.162 | 0.052 | 3.189 | 3.395 | 0 | 6 | |
| Practice Score | Medical | 225 | 5.098 | 1.017 | 0.068 | 4.964 | 5.231 | 2 | 6 | 0.004 |
| | Nursing | 165 | 5.321 | 0.963 | 0.075 | 5.173 | 5.469 | 1 | 6 | |
| | Allied Sciences | 103 | 4.883 | 1.247 | 0.123 | 4.640 | 5.127 | 0 | 6 | |
| | Total | 493 | 5.128 | 1.062 | 0.048 | 5.034 | 5.222 | 0 | 6 | |
| Stigma | Medical | 225 | 2.009 | 0.916 | 0.061 | 1.889 | 2.129 | 0 | 3 | 0.045 |
| | Nursing | 165 | 1.788 | 0.942 | 0.073 | 1.643 | 1.933 | 0 | 3 | |
TABLE 2 COMPARISON OF KNOWLEDGE, ATTITUDE, PRACTICE AND STIGMA SCORE WITH BRANCH OF HEALTHCARE STUDENTS

<table>
<thead>
<tr>
<th>Score</th>
<th>(I) Branch</th>
<th>(J) Branch</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge Score</td>
<td>Medical</td>
<td>Nursing</td>
<td>1.503</td>
<td>0.286</td>
<td>0</td>
<td>0.816</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
<td>Allied Sciences</td>
<td>1.201</td>
<td>0.332</td>
<td>0.001</td>
<td>0.403</td>
</tr>
<tr>
<td></td>
<td>Nursing</td>
<td>Allied Sciences</td>
<td>-0.302</td>
<td>0.351</td>
<td>1</td>
<td>-1.144</td>
</tr>
<tr>
<td>Attitude Score</td>
<td>Medical</td>
<td>Nursing</td>
<td>0.279</td>
<td>0.119</td>
<td>0.057</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
<td>Allied Sciences</td>
<td>0.07</td>
<td>0.138</td>
<td>1</td>
<td>-0.261</td>
</tr>
<tr>
<td></td>
<td>Nursing</td>
<td>Allied Sciences</td>
<td>-0.209</td>
<td>0.145</td>
<td>0.454</td>
<td>-0.558</td>
</tr>
<tr>
<td>Practice Score</td>
<td>Medical</td>
<td>Nursing</td>
<td>-0.223</td>
<td>0.108</td>
<td>0.116</td>
<td>-0.482</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
<td>Allied Sciences</td>
<td>0.214</td>
<td>0.125</td>
<td>0.263</td>
<td>-0.086</td>
</tr>
<tr>
<td></td>
<td>Nursing</td>
<td>Allied Sciences</td>
<td>0.438</td>
<td>0.132</td>
<td>0.003</td>
<td>0.12</td>
</tr>
<tr>
<td>Stigma</td>
<td>Medical</td>
<td>Nursing</td>
<td>0.221</td>
<td>0.095</td>
<td>0.062</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
<td>Allied Sciences</td>
<td>-0.001</td>
<td>0.11</td>
<td>1</td>
<td>-0.266</td>
</tr>
<tr>
<td></td>
<td>Nursing</td>
<td>Allied Sciences</td>
<td>-0.222</td>
<td>0.117</td>
<td>0.173</td>
<td>-0.502</td>
</tr>
</tbody>
</table>

“I” and “J” are represented as groups for comparison.

TABLE 3 ASSOCIATION OF KNOWLEDGE, ATTITUDE, PRACTICE AND STIGMA SCORE WITH GENDER OF HEALTHCARE STUDENTS

<table>
<thead>
<tr>
<th>Score</th>
<th>Sex</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>" t " Value</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Score</td>
<td>Male</td>
<td>144</td>
<td>15.59722</td>
<td>2.764205</td>
<td>3.436</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>349</td>
<td>14.63037</td>
<td>2.87244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude Score</td>
<td>Male</td>
<td>144</td>
<td>3.3125</td>
<td>1.161556</td>
<td>0.25</td>
<td>0.802</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>349</td>
<td>3.283668</td>
<td>1.163275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice Score</td>
<td>Male</td>
<td>144</td>
<td>4.847222</td>
<td>1.236504</td>
<td>3.819</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>349</td>
<td>5.243553</td>
<td>0.959373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stigma</td>
<td>Male</td>
<td>144</td>
<td>1.909722</td>
<td>0.952826</td>
<td>0.388</td>
<td>0.698</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>349</td>
<td>1.945559</td>
<td>0.925323</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>