ORIGINAL ARTICLE

Organoleptic and Nutritional evaluation of Apricot products developed for Hypertensive patients

Ashima Mundeja¹, Harsha Hirdyani²

¹Dept. of Food Technology and Nutrition, Lovely Professional University, Phagwara, India

Abstract Introduction Methodology Results Conclusion References Citation Tables / Figures

Corresponding Author

Address for Correspondence: Harsha Hirdyani, Dept. of Food Technology and Nutrition, Lovely Professional University, Phagwara, India

E Mail ID: harshahirdyani19@gmail.com

Citation

Mundeja A, Hirdyani H. Organoleptic and Nutritional evaluation of Apricot products developed for Hypertensive patients. Indian J Comm Health. 2014;26, Suppl S2:107-111

Source of Funding: Nil Conflict of Interest: None declared

Abstract

Introduction: Hypertension is an important public health problem worldwide. Dietary modifications include DASH diet with less sodium and high potassium and fiber intake. **Aim:** Development of value added products using dried apricots for hypertensive patients. **Methodology:** Dried apricot was selected based on its nutritional quality and high potassium content and was incorporated at different % levels in the formulation of two basic tea time snacks i.e. muffins and cookies. The products were studied for their organoleptic and nutritional parameters. **Results:** Products incorporated with 15% of apricots were most acceptable by the panel members having potassium content of 4.9 ± 0.07 and 4.2 ± 0.05 %, in muffins and cookies respectively. Protein, fat and ash content of muffin was found to be 6.96 ± 1.17 , 10.79 ± 0.11 and 0.84 ± 0.05 % respectively. Protein, fat and ash content of cookies were found to be 5.86 ± 0.09 , 10.02 ± 0.12 and 1.41 ± 0.07 % respectively. **Conclusion:** Considering the potassium content and nutritional and organoleptic evaluation it was concluded that apricot incorporated products developed were acceptable by people and inclusion of such fortified common daily use snacks will help community to maintain a healthy life.

Key Words

Hypertension; Potassium; Apricot; Organoleptic evaluation; Nutritional composition

Introduction

Hypertension is an important public health problem in India and leads annually to 1.1 million deaths (uncertainity index 0.9-1.3 million). It is estimated to account for 10.8 per cent of all deaths and 4.6 per cent of all Disability Adjusted Life Years (DALYs) in the country. (1) Globally also, hypertension is the most important risk factor for death and disease burden and is estimated to be responsible for 9.4 million deaths and 7.0 per cent DALYs. (2)

Several guidelines published in 2013 have refocussed international attention on hypertension. (3,4,5,6). A crucial focus in all these guidelines is both the achievement of optimum blood pressure (BP) as well as overall reduction in cardiovascular (CV) risk. These can be achieved by combination of a range of interventions: (i) lifestyle changes (increased physical activity, increased consumption of fruits and

vegetables, sodium restriction, weight management, alcohol abstinence and smoking/tobacco cessation); (ii) drugs to lower BP (calcium channel blockers-CCBs, diuretics, angiotensin converting enzyme inhibitors-ACEI, angiotensin receptor blockers-ARBs, beta-blockers, etc.) and to lower lipids using statins. (3) Important lifestyle or environmental factors are dietary excess of sodium and fat, dietary deficiency of potassium and fibre, alcohol intake, physical inactivity, and psychosocial stress. (7)

Obesity, especially, truncal obesity are powerful proximate determinants of high BP, also in Indians (8), and lifestyle influences on their genesis are well known. Major lifestyle factors influencing hypertension management and amenable to control are shown in Table 1

Lifestyle measures, are a crucial step in hypertension management. Dietary Approaches to Stop

Hypertension (DASH) study showed that a diet low in sodium and high in fruits, vegetables, and calcium is helpful in treating hypertension.(9)

Increased potassium intake High potassium intake is associated with reduced BP. Although data from individual trials have been inconsistent, three meta-analyses of these trials have documented a significant inverse relationship between potassium intake and BP in non-hypertensive and hypertensive individuals. (10).

In the meta-analysis by Whelton et al (11) average systolic and diastolic BP reductions associated with increase in urinary potassium excretion of 2 g/d (50mmol/d) were 4.4 and 2.5 mm Hg in hypertensive and 1.8 and 1.0 mm Hg in non-hypertensive individuals. Available data suggest that increased potassium has beneficial effects on BP in the setting of salt intake that is low. Potassium reduces BP to a greater extent in blacks than in whites. A study from India reports similar BP reduction with potassium supplementation as observed in the Caucasian whites. (12) Because a high potassium intake can be achieved through diet rather than pills and because potassium derived from foods is also accompanied by a variety of other nutrients, the preferred strategy to increase potassium intake is to consume foods such as fruits and vegetables rich in potassium, rather than supplements. In the DASH trial, the two groups that increased fruit and vegetable consumption both lowered BP.(13) Dietary Approaches to Stop Hypertension (DASH) was a program by the National Institutes of Health, USA(9, 13, 14). This series of three large controlled trials tested the effects of dietary patterns on BP. The first trial was a randomized feeding study that compared 3 dietary patterns. (9). Of the 3 diets studied, the most effective diet, now called the DASH diet, emphasized fruits, vegetables, and low-fat dairy products; included whole grains, poultry, fish and nuts; and was low in fats, red meat, sweets, and sugar-containing beverages. Accordingly, it was rich in potassium, magnesium, calcium, and fiber and was low in total fat, saturated fat, and cholesterol; it also was slightly high in protein. Apricot is one of the best sources of potassium and its intake is less as compared to other food products. So this study was conducted to develop potassium rich products made from apricot. Incorporation of apricot in the commonly used food products will ensure greater intake of potassium by the hypertensive patients which ultimately will help in maintaining bloodpressure and thus treating and preventing the condition of hypertension.

Aims & Objectives

Development of value added products using dried apricots for hypertensive patients.

Material and Methods

The local market of Rajpura, Punjab was selected to purchase the apricot. It was then peeled and kept in oven for drying, at a temperature of $200 \pm 10^{\circ}$ C for $^{\sim}$ 5 min. The dried apricot was then powdered and used for the development of cookies and muffins.

Products with apricot powder: The potassium rich apricot powder was incorporated in two basic tea time snacks i.e. cookies and muffins, in different ratios.

Cookies: Standardized recipe of the cookies has the ingredients, refined flour 100gms, butter50gms, sugar 50gms and baking bowder. Cookies incorporated with apricot were prepared using refined flour and apricot powder blends in the proportion of 100:0, 90:10, 85:1580:20 and 75:25, remaining ingredients kept same.

All the ingredients were used in the above mentioned amounts and mixed properly to make dough. This was then shapedinto balls and placed onto ungreased cookies sheets. 20 cookies were developed using 100gms of raw material. The cookiess were then baked at a temperature of 220degree Celsius for 8minutes and were packed in an air tight container.

Muffins: Standardized recipe of the muffins has the ingredients, refined flour 100gms, butter50gms, sugar 50gms, milk 50gms, milkmaid 50gms and baking bowder. Muffins incorporated with apricot were prepared using refined flour and apricot powder blends in the proportion of 100:0, 90:10, 85:1580:20 and 75:25, remaining ingredients kept same.

Refined flour, apricot powder and all the ingredients were used in the above mentioned amounts and mixed properly. The batter was then transferred to muffin moulds and baked at 220 degree Celsius for 12 minutes. 5 muffins were developed using 100gms of raw material.

Organolaptic evaluation of the apricot products The different apricot products were evaluated sensorily to find the maximum acceptable level of incorporation by a panel of 20 semi-trained judges using 9-point Hedonic scale following the method of Peryam and Pilgrim (15). The products were

INDIAN JOURNAL OF COMMUNITY HEALTH / VOL 26 / SUPP 02 / DEC 2014 evaluated for their appearance, color, texture, taste,

flavour and overall acceptability.

Nutritional analysis After completing the organoleptic evaluation of products, the best acceptable products of the cookies and muffins were nutritionally analysed. The products were analysed for the ash, moisture, fiber, carbohydrate and potassium content. (AOAC, 2010)Protein was estimated by Lowry's method. Soxhlet was used for fat estimation.

Statistical analysis The data pertaining to organoleptic evaluation and nutritional composition of the products was analyzed using the analysis of variance (ANOVA) technique while paired t-test was used to compare different parameters between the control and apricot incorporated products (16)

Results

Cookies and Muffins incorporated with 15% of apricots (Sample 2) were most acceptable by the panel members. (Table 2 and Table 3) Biochemical estimations were done of the most acceptable products. Potassium content was found to be 4.9 ± 0.07 and 4.2 ± 0.05 %, in muffins and cookies respectively. Protein, fat and ash content of muffin was found to be 6.96 ± 1.17 , 10.79 ± 0.11 and 0.84 ± 0.05 % respectively. Protein, fat and ash content of cookies were found to be 5.86 ± 0.09 , 10.02 ± 0.12 and 1.41 ± 0.07 % respectively. Moisture and fiber content in cookies were 6.38 ± 0.11 and 1.18 ± 0.06 % respectively. Moisture and fiber content in muffins were 14.69 ± 0.04 and 0.58 ± 0.08 % respectively. (Table 4)

Conclusion

Apricot incorporated products developed in this study were acceptable by people and inclusion of such fortified common daily use snacks will help community to maintain a healthy life. Also considering the nutritional importance of apricot in terms of potassium content, its suitability of incorporation into traditional and convenience products and value addition will be helpful for hypertension patients for maintaining the blood pressure level. Work in pursuit of this strategy includes continuing efforts to ensure food fortification, supplementation, and healthy lifestyle measures to prevent and treatment the global condition for hypertension.

Recommendation (Public health importance)

Nutritional importance of apricot in terms of potassium content and its suitability of incorporation into traditional and convenience products and value addition will be helpful for hypertension patients for maintaining the blood pressure level.

Relevance of the study

Development of value added products of public health importance

Authors Contribution

AM: worked on this research study as a part of her M.Sc Nutrition and Dietetics dissertation thesis. HH: provided guidance for the research study.

References

- Institute for Health Metrics and Evaluation. India high blood pressure. Available from:http://www.healthmetricsandevaluation.org/searchgbd-data, accessed on March 17, 2014
- Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disese and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224-60
- Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al, Task Force Members. 2013 ESH/ESC guidelines for the management of arterial hypertension; the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). J Hypertens 2013; 31 : 1281-357.
- Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA, et al. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. Hypertension 2014; 63: 878-85
- James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guidelines for the management of high blood pressure in adults: report from the panel members appointed to the Eight Joint National Committee (JNC 8). JAMA 2014; 311: 507-20
- Weber MA, Schiffrin EL, While WB, Mann S, Lindholm LH, Kenerson JG, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J ClinHypertens (Greenwich) 2014; 16: 14-26
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr, et al. Seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure. Hypertension. 2003;42:1206–52. [PubMed]
- 8. Gupta R. Defining hypertension in the Indian population. Natl Med J India. 1997;10:139–43.[PubMed]

INDIAN JOURNAL OF COMMUNITY HEALTH / VOL 26 / SUPP 02 / DEC 2014

- Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure: DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24. [PubMed]
- Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM; American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308. [PubMed]
- Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, et al. Effects of oral potassium on blood pressure. Metaanalysis of randomized controlled clinical trials. JAMA.1997;277:1624–32. [PubMed]
- Patki PS, Singh J, Gokhale SV, Bulakh PM, Shrotri DS, Patwardhan S. Efficacy of potassium and magnesium in essential hypertension: a double-blind, placebo controlled, crossover study. BMJ.1990;301:521–3. [PMC free article] [PubMed]

[Organoleptic and Nutritional...] | Mundeja A et al

- 13. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344:3–10. [PubMed]
- Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, et al. for the DASH-Sodium Trial Collaborative Research Group. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135:1019–28.[PubMed]
- 15. Peryam DR, Pilgrim JF. Hedonic scale method of measuring food preferences. Food Technol. 1957;11(9):9–14
- 16. Snedecor GW, Cochran WG. Statistical methods. Ames: lowa State University Press; 1989
- AOAC (1980). Official Methods of Analysis, 13 TH Ed., Association of Official Analytical Chemists, Washington DC.

Tables

TABLE 1 DIETARY AND LIFESTYLE CHANGES THAT MODIFY BLOOD PRESSURE

	Level of	Recommendations				
	evidence					
Dietary sodium intake	++	<100mmol (2.3g) of sodium per day.				
Dietary potassium intake	++	>120mmol (4.7g) of potassium per day				
Omega-3 polyunsaturated fat	++	Increase omega-3 fat intake from natural resources				
Overall healthy dietary patterns	++	An overall healthy diet: DASH diet (USA), MediterraneanDiet (Europe), Omish diet (USA), Indian vegetarian diet				
Dietary calcium magnesium	+/-	Increase dietary calcium and magnesium intake throughnatural resources				
Saturated fat, omega-6 unsaturated Fat, monounsaturated fat	+/- to +	Low saturated fat diet for reducing the cardiovascular risk				
Protein, total protein, animal protein, Vegetable protein	+/- to +	Increase vegetable protein in terms of carbohydrates				
Carbohydrate	+	Amount and type of carbohydrate uncertain				
Fibre	+	High fibre diet				
Cholesterol	+/-	Low cholesterol diet to reduce cardiovascular risk				
Exercise	+	At least 30 min of moderate activity most days of the week				
Alcohol intake	++	Moderation of alcohol intake to <2 drinks/per day in men and <1drink/per day in women in those who take alcohol				
Stress Management	+/-	Yoga, meditation, progressive relaxation techniques				

Source: Strategies for initial management of hypertension. Indian J Med Res. Nov 2010: 132(5): 531 - 542

TABLE 2 SENSORY SCORES OF APRICOT COOKIES

Sample	Apricot incorporation %	Appearance	Colour	Texture	Taste	Flavor	Overall acceptability
Control	0	8.2 ± 1.15	8.16 ± 1.21	8.12 ± 1.45	7.85 ± 1.23	7.56 ± 1.29	7.03 ± 1.71
Sample 1	10	7.16 ± 1.02	7.24 ± 0.85	8.76 ± 1.03	7.27 ± 1.43	7.26 ± 1.32	7.53 ± 1.26
Sample 2	15	8.72 ± 1.02	7.9 ± 1	8.9 ± 1.2	7.82 ± 1.54	7.78 ± 0.82	8.86 ± 1.31
Sample 3	20	7.25 ± 1.05	6.58 ± 0.07	7.24 ± 0.08	7.24 ± 1.32	7.5 ± 1.11	7.26 ± 1.98
Sample 4	25	6.56 ± 1.02	7.1 ± 1.12	7.26 ± 1.35	7.38 ± 1.68	7.28 ± 1.05	6.8 ± 1.28

Mean values \pm standard deviation (n = 20)

TABLE 3 SENSORY SCORES OF APRICOT MUFFINS

Sample	Apricot incorpora tion %	Appearance	Colour	Texture	Taste	Flavor	Overall acceptability
Control	0	7.63 ± 1.34	8.24 ± 1.42	7.46 ± 0.06	8.53 ± 1.48	8.64 ± 1.84	8.06 ± 1.68
Sample 1	10	7.24 ± 0.03	7.26 ± 1.43	7.41 ± 1.26	7 ± 1.32	7.54 ± 0.84	7.38 ± 1.32
Sample 2	15	7.84 ± 0.86	7.74 ± 1.46	7.66 ± 1.12	7.74 ± 1.89	7.44 ± 1.28	7.8 ± 1.28
Sample 3	20	7.2 ± 0.64	7.16 ± 0.39	7 ± 1.26	7.46 ± 1.24	7.12 ± 0.48	7.58 ± 1.68
Sample 4	25	5.03 ± 1.24	6.2 ± 1.81	7 ± 0.41	6.54 ± 1.28	6.7 ± 1.68	6.6 ± 1.26

Mean values ± standard deviation (n = 20)

TABLE 4 NUTRITIONAL COMPOSITION OF APRICOT PRODUCTS

Sample	Moisture%	Fat%	Ash%	Protein%	Dietary fibre%	Carbohydrate%	Potassium %
Cookies	6.38 ± 0.11	10.02 ±0.12	1.41±0.07	5.86± 0.09	1.18 ± 0.06	74.88± 2.43	4.2 ± 0.05
Muffins	14.69± 0.04	10.79 ± 0.11	0.84 ± 0.05	6.96 ± 1.17	0.58 ±0.08	67.82± 1.12	4.9 ± 0.07