Using data mining methods for risk assessment and intervention planning in diabetic patients-An exploratory study
DOI:
https://doi.org/10.47203/IJCH.2024.v36i02.019Keywords:
Cluster analysis, Data mining, Diabetes Mellitus, Medical InformaticsAbstract
.
Downloads
References
World Health Organization. Diabetes. Accessed December 4, 2022. https://www.who.int/health-topics/diabetes
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-149.
Bommer C, Heesemann E, Sagalova V, et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5(6):423-430.
Sarría-Santamera A, Orazumbekova B, Maulenkul T, et al. The Identification of Diabetes Mellitus Subtypes Applying Cluster Analysis Techniques: A Systematic Review. Int J Environ Res Public Health. 2020;17(24):9523.
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361-369.
Eby EL, Edwards A, Meadows E, et al. Evaluating the relationship between clinical and demographic characteristics of insulin-using people with diabetes and their health outcomes: a cluster analysis application. BMC Health Serv Res. 2021;21(1):669.
Wang X, Gao H, Xu H. Cluster Analysis of Unhealthy Lifestyles among Elderly Adults with Prediabetes: A Cross-Sectional Study in Rural China. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2019;10(5):1935-1948.
Nnoaham KE, Cann KF. Can cluster analyses of linked healthcare data identify unique population segments in a general practice-registered population? BMC Public Health. 2020;20(1):798.
Ogbuabor G, F. N U. Clustering Algorithm for a Healthcare Dataset Using Silhouette Score Value. Int J Comput Sci Inf Technol. 2018;10(2):27-37.
Robertson L, Vieira R, Butler J, et al. Identifying multimorbidity clusters in an unselected population of hospitalised patients. Sci Rep. 2022;12(1):5134.
Do CB, Batzoglou S. What is the expectation maximization algorithm? Nat Biotechnol. 2008;26(8):897-899.
Meila M, Heckerman D. An Experimental Comparison of Model-Based Clustering Methods. Mach. Learn. 2001;42: 9-29.
Wang T, Zhao Z, Wang G, et al. Age-related disparities in diabetes risk attributable to modifiable risk factor profiles in Chinese adults: a nationwide, population-based, cohort study. Lancet Healthy Longev. 2021;2(10):e618-e628.
Bahour N, Cortez B, Pan H, et al. Diabetes mellitus correlates with increased biological age as indicated by clinical biomarkers. GeroScience. 2022;44(1):415-427.
Nguyen QM, Xu JH, et al. Correlates of Age Onset of Type 2 Diabetes Among Relatively Young Black and White Adults in a Community. Diabetes Care. 2012;35(6):1341- 1346.
Zhang L, Yang H, Yang P. The Correlation between Type 2 DiabetesMellitus and Cardiovascular Disease Risk Factors in the Elderly. Appl Bionics Biomech. 2022;2022: e4154426.
Lee MK, Han K, Kwon HS. Age-specific diabetes risk by the number of metabolic syndrome components: a Korean nationwide cohort study. Diabetol Metab Syndr. 2019;11(1):112.
Uddin R, Lee EY, Khan SR, et al. Clustering of lifestyle risk factors for non- communicable diseases in 304,779 adolescents from 89 countries: A global perspective. Prev Med. 2020; 131:105955.
Lefèvre T, Rondet C, Parizot I, et al. Applying Multivariate Clustering Techniques to Health Data: The 4 Types of Healthcare Utilization in the Paris Metropolitan Area. Divaris K, ed. PLoS ONE. 2014;9(12):e115064.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Vanisree Ramanathan, Sharyu Mhamane, Jayesh Pawar, Nisha P. K., Ujjwal Kumar, Shailesh Tripathi, Keerti Pradhan, Sudip Bhattacharya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.