Prevalence of Pre-diabetes and its associated risk factors: A cross-sectional study in West Tripura district of India

Authors

DOI:

https://doi.org/10.47203/IJCH.2020.v32i03.012

Keywords:

Pre-diabetes, Risk factors, West Tripura

Abstract

Background: Early detection of Pre-diabetes and controlling the risk factors may delay the development of Diabetes and related complications. Objectives: To estimate the prevalence of Pre-diabetes in West Tripura district of India and to study it’s associations with selected risk factors. Methods: This community based cross-sectional study was conducted in West Tripura district of India, during 1st January 2018 to 31st December 2019 among 320 individuals selected by multistage sampling. Fasting blood sugar was tested for diagnosing Pre-diabetes. Data entry and analysis were performed using SPSS-24. Result: Prevalence of Pre-diabetes in West Tripura district was 19.4%, 28.1% were hypertensive and 32.5% had high BMI. Multivariable logistic regression has identified age ?40 yr (OR: 20.62, 95% CI: 4.97 – 85.49) higher socioeconomic status (OR: 4.99, 95% CI: 1.95 – 12.72), family history of diabetes (OR: 9.72, 95% CI: 2.51 – 37.61), higher BMI (OR: 2.79, 95% CI: 1.32 – 5.89) and physical inactivity (OR: 3.52, 95% CI: 1.66 – 7.46) as the predictors of Pre-diabetes. Conclusion: West Tripura district of India has higher prevalence of pre-diabetes than the national average. Age ?40 yr, higher socioeconomic status, family history of diabetes, higher BMI and physical inactivity were identified as significant predictors of Pre-diabetes in this region.

Downloads

Download data is not yet available.

References

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004 Jan;27 Suppl 1:S5-S10. doi: 10.2337/diacare.27.2007.s5. PMID: 14693921.[PubMed].

American Diabetes Association. Prediabetes: What Is It and What Can I Do? Available from: http://main.diabetes.org/dorg/PDFs/what-is-prediabetes.pdf [accessed 1st January 2020].

World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF consultation. Geneva: World Health Organization, 2006.

International Diabetes Federation. IDF diabetes atlas. 9th edition. Brussels: International Diabetes Federation, 2019. Available from: https://www.diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf. [Accessed 1st January 2020].

Lorenzo C, Williams K, Hunt KJ, Haffner SM. The National Cholesterol Education Program - Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care. 2007 Jan;30(1):8-13. doi: 10.2337/dc06-1414. PMID: 17192325.[PubMed].

Melsom T, Mathisen UD, Ingebretsen OC, Jenssen TG, Njølstad I, Solbu MD, Toft I, Eriksen BO. Impaired fasting glucose is associated with renal hyperfiltration in the general population. Diabetes Care. 2011 Jul;34(7):1546-51. doi: 10.2337/dc11-0235. Epub 2011 May 18. PMID: 21593291; PMCID: PMC3120190.[PubMed].

Nguyen TT, Wang JJ, Wong TY. Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care. 2007 Oct;30(10):2708-15. doi: 10.2337/dc07-0732. Epub 2007 Jun 26. PMID: 17595350.[PubMed].

Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010 Jun 26;375(9733):2215-22. doi: 10.1016/S0140-6736(10)60484-9. Erratum in: Lancet. 2010 Sep 18;376(9745):958. Hillage, H L [corrected to Hillege, H L]. PMID: 20609967; PMCID: PMC2904878.[PubMed].

Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007 Mar;30(3):753-9. doi: 10.2337/dc07-9920. PMID: 17327355.[PubMed].

Hu Z, Gao F, Qin L, Yang Y, Xu H. A Case-Control Study on Risk Factors and Their Interactions with Prediabetes among the Elderly in Rural Communities of Yiyang City, Hunan Province. J Diabetes Res. 2019 Feb 18;2019:1386048. doi: 10.1155/2019/1386048. PMID: 30911549; PMCID: PMC6398036.[PubMed].

Díaz-Redondo A, Giráldez-García C, Carrillo L, Serrano R, García-Soidán FJ, Artola S, Franch J, Díez J, Ezkurra P, Millaruelo JM, Seguí M, Sangrós J, Martínez-Candela J, Muñoz P, Goday A, Regidor E. Modifiable risk factors associated with prediabetes in men and women: a cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes (PREDAPS-Study). BMC Fam Pract. 2015 Jan 22;16:5. doi: 10.1186/s12875-014-0216-3. PMID: 25609029; PMCID: PMC4316391.[PubMed].

Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne- Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001 May 3;344(18):1343-50. doi: 10.1056/NEJM200105033441801. PMID: 11333990. [PubMed].

Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V; Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006 Feb;49(2):289-97. doi: 10.1007/s00125-005-0097-z. Epub 2006 Jan 4. PMID: 16391903.[PubMed].

Saito T, Watanabe M, Nishida J, Izumi T, Omura M, Takagi T, Fukunaga R, Bandai Y, Tajima N, Nakamura Y, Ito M; Zensharen Study for Prevention of Lifestyle Diseases Group. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011 Aug 8;171(15):1352-60. doi: 10.1001/archinternmed.2011.275. PMID: 21824948.[PubMed].

Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, Adhikari P, Rao PV, Saboo B, Kumar A, Bhansali A, John M, Luaia R, Reang T, Ningombam S, Jampa L, Budnah RO, Elangovan N, Subashini R, Venkatesan U, Unnikrishnan R, Das AK, Madhu SV, Ali MK, Pandey A, Dhaliwal RS, Kaur T, Swaminathan S, Mohan V; ICMR–INDIAB Collaborative Study Group. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross- sectional study. Lancet Diabetes Endocrinol. 2017 Aug;5(8):585-596. doi: 10.1016/S2213-8587(17)30174-2. Epub 2017 Jun 7. Erratum in: Lancet Diabetes Endocrinol. 2017 Aug;5(8):e5. PMID: 28601585.[PubMed].

Census of India. District census handbook. Available from: www.censusindia.gov.in/2011census/dchb/DCHB.html [Accessed 1st January 2020].

Tunstall-Pedoe H, Kuulasmaa K, Tolonen H, Davidson M, Mendis S, WHO, et al. The WHO MONICA project. In: Tunstall-Pedoe H, eds. MONICA Monograph and Multimedia Sourcebook. Geneva: World Health Organization; 2003.

Zhou X, Pang Z, Gao W, Wang S, Zhang L, Ning F, Qiao Q. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China. Diabetes Care. 2010 Mar;33(3):545-50. doi: 10.2337/dc09-1410. Epub 2009 Dec 10. PMID: 20007941; PMCID: PMC2827505.[PubMed].

Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, Rao PV,Yajnik CS, Prasanna Kumar KM, Nair JD; Diabetes Epidemiology Study Group inIndia (DESI). High prevalence of diabetes and impaired glucose tolerance inIndia: National Urban Diabetes Survey. Diabetologia. 2001 Sep;44(9):1094-101.doi: 10.1007/s001250100627. PMID: 11596662.[PubMed].

Kacker S, Saboo N, Jitendar. Prevalence of pre diabetes subjects attending tertiary health care center in Jaipur city. National Journal of Laboratory Medicine. 2018; 7(3):01-06.

Muthunarayanan L, Ramraj B, Russel JK. Prevalence of prediabetes and its associated risk factors among rural adults in Tamil Nadu. Arch Med Health Sci 2015; 3(2):178-84.

Dasappa H, Fathima FN, Prabhakar R, Sarin S. Prevalence of diabetes and pre-diabetes and assessments of their risk factors in urban slums of Bangalore. JFamily Med Prim Care. 2015 Jul-Sep;4(3):399-404. doi: 10.4103/2249-4863.161336.PMID: 26288781; PMCID: PMC4535103.PubMed].

Zuhara NVF, Banu AT, Chokli N. Prevalence and risk factors of type 2 diabetes in malappuram, Kerala. International Journal of Research and Review. 2019; 6(4):235-43.

Downloads

Published

2020-09-30

How to Cite

1.
Sengupta B, Bhattacharjya H. Prevalence of Pre-diabetes and its associated risk factors: A cross-sectional study in West Tripura district of India. Indian J Community Health [Internet]. 2020 Sep. 30 [cited 2024 Dec. 26];32(3):533-9. Available from: https://iapsmupuk.org/journal/index.php/IJCH/article/view/1651

Issue

Section

Original Article

Dimensions Badge

Most read articles by the same author(s)