Tobacco Cessation Counseling: A Humanistic Approach by Non-Human

Authors

  • Twinkle Sharma All India Institute of Medical Sciences, Rishikesh, Uttarakhand https://orcid.org/0000-0002-4327-7478
  • Yogesh Bahurupi All India Institute of Medical Sciences, Rishikesh, Uttarakhand
  • Ashwini Mahadule All India Institute of Medical Sciences, Rishikesh, Uttarakhand
  • Mahendra Singh All India Institute of Medical Sciences, Rishikesh, Uttarakhand https://orcid.org/0000-0001-5249-360X
  • Pradeep Aggarwal All India Institute of Medical Sciences, Rishikesh, Uttarakhand https://orcid.org/0000-0003-1415-0483

DOI:

https://doi.org/10.47203/IJCH.2020.v32i03.030

Keywords:

Tobacco Use Cessation, Health Care Sector, Mental Health, Health Workforce, Smoking Cessation

Abstract

“Counselling is a professional relationship that empowers diverse individuals, families, and groups to accomplish mental health, wellness, education, and career goals. It’s a type of applied psychology”. When used for helping an individual in quitting a habit it requires using cognitive therapies. Artificial Intelligence (AI) has been increasingly used in the healthcare sector, but its use for counseling purposes is still questionable.  Recently a virtual health worker has been introduced by World Health Organization (WHO) representing increased use of AI in healthcare. This article also explores the features of this virtual health worker and how the counseling process is done by a human health professional and what is different in counseling done by a virtual health worker.Counselling 

Downloads

Download data is not yet available.

References

Who.int. 2020. AI For Quitting Tobacco Initiative. [online] Available at: https://www.who.int/news-room/spotlight/ai-for-quitting-tobacco-initiative. Accessed 2 August 2020.

Dalvinder P, Grewal S. A Critical Conceptual Analysis of Definitions of Artificial Intelligence as Applicable to Computer Engineering. IOSR Journal of Computer Engineering, 2014;16, 9-13. https://doi.org/10.9790/0661-16210913

Frankish. K, Ramsey. W. The Cambridge Handbook Of Artificial Intelligence. Cambridge University press.2014:30. ISBN 9780521871426. Available at: https://books.google.co.in/books?hl=en&lr=&id=RYOYAwAAQBAJ&oi=fnd&pg=PA316&dq=agi+artificial+intelligence+research+paper&ots=A002vobGtu&sig=Lt1zHujRBDJ6Gt2r2zn1yT7kbQI#v=onepage&q=general&f=false. Accessed 2 August 2020.

Fourtané S. The Three Types of Artificial Intelligence: Understanding AI. [online] Interestingengineering.com. Available at: https://interestingengineering.com/the-three-types-of-artificial-intelligence-understanding-ai Accessed 2 August 2020.

Goertzel B, Wang P. Advances In Artificial General Intelligence: Concepts, Architectures And Algorithms. 2007:36[online] Iospress.nl. Available at: https://www.iospress.nl/book/advances-in-artificial-general-intelligence-concepts-architectures-and-algorithms/ . Accessed 2 August 2020.

Monett, D., Lewis, C. P., Thórisson, K. R., Bach, J., Baldassarre, G., Granato, G., Berkeley, I. N., Chollet, F., Crosby, M., Shevlin, H., Fox, J., Laird, J. E., Legg, S., Lindes, P., Mikolov, T., Rapaport, W. J., Rojas, R., Rosa, M., Stone, P., Sutton, R. S., Yampolskiy, R. V., Wang, P., Schank, R., Sloman, A., & Winfield, A. Special Issue “On Defining Artificial Intelligence”—Commentaries and Author’s Response, Journal of Artificial General Intelligence, 2020;11(2):1-100. doi: https://doi.org/10.2478/jagi-2020-0003

Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligencein medicine. J Family Med Prim Care. 2019 Jul;8(7):2328-2331. doi:10.4103/jfmpc.jfmpc_440_19. PMID: 31463251; PMCID: PMC6691444.[PubMed]

Davenport T, Kalakota R. The potential for artificial intelligence inhealthcare. Future Healthc J. 2019 Jun;6(2):94-98. doi:10.7861/futurehosp.6-2-94. PMID: 31363513; PMCID: PMC6616181.[PubMed] .

Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif Intell Med. 2013;57(1):9-19. doi:10.1016/j.artmed.2012.12.003.

Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T,Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, TalatiN, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M,Turakhia MP; Apple Heart Study Investigators. Large-Scale Assessment of aSmartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019 Nov14;381(20):1909-1917. doi: 10.1056/NEJMoa1901183. PMID: 31722151.[PubMed]

Feldman J, Thomas-Bachli A, Forsyth J, Patel ZH, Khan K. Development of a global infectious disease activity database using natural language processing, machine learning, and human expertise. J Am Med Inform Assoc. 2019;26(11):1355-1359. doi:10.1093/jamia/ocz112.

Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L,Webster DR. Prediction of cardiovascular risk factors from retinal fundusphotographs via deep learning. Nat Biomed Eng. 2018 Mar;2(3):158-164. doi:10.1038/s41551-018-0195-0. Epub 2018 Feb 19. PMID: 31015713.[PubMed]

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B,Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning indrug discovery and development. Nat Rev Drug Discov. 2019 Jun;18(6):463-477.doi: 10.1038/s41573-019-0024-5. PMID: 30976107; PMCID: PMC6552674.[PubMed]

Nadarzynski T, Miles O, Cowie A, Ridge D. Acceptability of artificialintelligence (AI)-led chatbot services in healthcare: A mixed-methods study.Digit Health. 2019 Aug 21;5:2055207619871808. doi: 10.1177/2055207619871808.PMID: 31467682; PMCID: PMC6704417.[PubMed]

Machines S, 2020. Soul Machines Raises US$40M Series B From Global Investment Community To Advance The Way Humans And Machines Collaborate. [online] GlobeNewswire News Room. Available at: https://www.globenewswire.com/news-release/2020/01/09/1968405/0/en/Soul-Machines-Raises-US-40M-Series-B-From-Global-Investment-Community-to-Advance-the-Way-Humans-and-Machines-Collaborate.html [Accessed 2 August 2020].

Machines S. Healthcare | Soul Machines. 2020 [online] Soul Machines. Available at: https://www.soulmachines.com/industries/healthcare/ . Accessed 2 August 2020.

Martínez-Vispo C, Rodríguez-Cano R, López-Durán A, Senra C, Fernández Del Río E, Becoña E. Cognitive-behavioral treatment with behavioral activation for smoking cessation: Randomized controlled trial. PLoS One. 2019;14(4):e0214252. doi:10.1371/journal.pone.0214252

Denison E, Underland V, Mosdøl A, Vist G. Cognitive Therapies for Smoking Cessation: A Systematic Review. Oslo, Norway: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH); 2017.

Farooq MU, Puranik MP, Uma S R. Effectiveness of cognitive-behavioral therapy compared with basic health education for tobacco cessation among smokers: A randomized controlled trial. J Indian Assoc Public Health Dent 2020;18:25-30

HealthEngine Blog. Cognitive-Behavioural Therapy (CBT) For Quitting Smoking - Healthengine Blog. 2020. [online] Available at: https://healthengine.com.au/info/cognitive-behavioural-therapy-cbt-for-quitting-smoking . Accessed 2 August 2020

Hill J, Randolph Ford W, Farreras I. Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. Computers in Human Behavior. 2015;49:245-250.

Downloads

Published

2020-09-30

How to Cite

1.
Sharma T, Bahurupi Y, Mahadule A, Singh M, Aggarwal P. Tobacco Cessation Counseling: A Humanistic Approach by Non-Human . Indian J Community Health [Internet]. 2020 Sep. 30 [cited 2025 Jan. 22];32(3):613-6. Available from: https://iapsmupuk.org/journal/index.php/IJCH/article/view/1869

Issue

Section

Commentary

Dimensions Badge

Most read articles by the same author(s)

<< < 1 2 3 4